Pre-class Warm-up!!!
Let $f: R \wedge 3->R$ be a function.
Select the best answer to complete the sentence.
The gradient of f is
a. a function $R \wedge 3->R$
b. a function $R \rightarrow R^{\wedge} 3$
c, a function $R \wedge 3->R^{\wedge} 3$
d, not defined.
e, none of the above.

$$
\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

Question 2: What really important Thing is different about today's
Pre-class Warm-up!!!?

4.3 Vector fields

We learn:

- What is a vector field
- Examples: flow of a fluid force fields
gradient vector fields
- Flow lines

Things we don't do (right now):

- Escape velocity
- Newton's gravitational law
- Coulomb's law
- Show that a vector field is not a gradient vector field (example 7)

Types of question:

- sketch and recognize vector fields
- Verify that a given path is a flow line for some vector field
- Find a function with a specified vector field as gradient (qn 21, but not done in the text of the book)

Definition: a vector field on \mathbb{R}^{n} is a
flenction $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Sketch the vector field $F(x, y)=(y, x+y)$

Definition: a flow line for a vector field F is a path $c: \mathbb{R} \rightarrow \mathbb{R}^{n}$ so that $\left.c^{2}(t)=F(a t)\right)$

Match the fields to the pictures

1. $F(x, y)=(y,-x)$
2. $F(x, y)=(-y, x)$
3. $F(x, y)=(x, y)$
d
4. $F(x, y)=(y, x)$

For 1. check when $y=0$: $F(x, 0)=(0,-x)$. Oh positive x-avers rectors point down

Like questions 15-20:
Show that $c(t)=(t, t \wedge 2 / 2)$ is a flow line for the vector field $F(x, y)=(1, x)$.
Solution. We check $c^{\prime}(t)=F(c(t))$
$c^{\prime}(t)=(1, t) \approx F(c(t))=(1, t)$

Like question 21. Find a function f so that $F(x, y, z)=\left(y^{\wedge} 2,2 x y, 1\right)$ is the gradient of f (or show that such f does not exist).

Solution: We find $f(x, y, z)$ so
then $\frac{\partial f}{\partial x}=y^{2}, \frac{\partial f}{\partial y}=2 x y, \frac{\partial f}{\partial z}=1$
Look at first equation: $f=x y^{2}+a(y, z)$
for same a.
Ind equation $f=x y^{2}+b(x, 2)$
Frdegn $f=2+c(x, y)$.

$$
f=x y^{2}+2 \text { works! } \square
$$

4.4 Curl and divergence

We learn:

- The definitions of

$$
\operatorname{div} F \text { when } F: R \wedge n->R \wedge n
$$ curl F when $F: R \wedge 3->R \wedge 3$

- Notation $\nabla \cdot F=\operatorname{dov} F, \nabla \times F=\operatorname{curl} E$
- Physical interpretations $\operatorname{grad} f=\nabla f$
- $\operatorname{curl}(\operatorname{grad} f)=0$ and $\operatorname{div}(\operatorname{curl} F)=0$
- the Laplacian. $\nabla \cdot(\nabla f)=\nabla^{2} f$

What you don't need to memorize:

- the other formulas on page 255.

Types of questions:

- calculate div and curl.
- Which composites make sense?
- Verify e.g. curl $(\operatorname{grad} f)=0$
- Scalar curl.

Definition Let $F=\left(F_{-} 1, \ldots, F_{-} n\right)$. The divergence of F is $\nabla_{0} F=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}$

$$
\nabla+F: \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

Examples: $F(x, y, 0)=(x, y, 0) ; G(x, y, 0)=(-y, x, 0)$

Definition Let $F=\left(F_{-} 1, F_{-} 2, F _3\right)$. The curl of F is

$$
\begin{aligned}
& \text { of } F \text { is } \\
& \operatorname{curl} L=\nabla \times F=\left(\frac{\partial F_{3}}{\partial y}\right. \\
& =\frac{\partial F_{2}}{\partial z} \\
& \frac{\partial F}{\partial z} \\
& =\operatorname{det}\left[\begin{array}{lll}
\partial x & \frac{\partial F_{3}}{\partial x} & \left.\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right]
\end{aligned}
$$

where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
Examples: $F(x, y, 0)=(x, y, 0) ; G(x, y, 0)=(-y, x, 0)$

$$
\begin{aligned}
& \nabla \times F \\
= & \left(\frac{\partial 0}{\partial y}-\frac{\partial y}{\partial z},\right. \\
= & (0,0,0)
\end{aligned}
$$

curl measures counterclockwise rotation about a rector, and points in the durection of that vector.

