Pre-class Warm-up!!! Let $f: R^3 \rightarrow R$ be a function. Select the best answer to complete the sentence. The gradient of f is - a. a function $R^3 -> R$ - b. a function $R \rightarrow R^3$ - c, a function $R^3 \rightarrow R^3$ - d. not defined. - e, none of the above. grad $$f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$$ Thing is different about today's Pre-class Warm-us!!!? | 4.3 Vector fields | Things we don't do (right now): | | | | | | | | | | | | |--|---------------------------------|--|--|--|--|--|--|--|--|--|--|--| | | Escape velocity | | | | | | | | | | | | | We learn: | Newton's gravitational law | | | | | | | | | | | | | What is a vector field | Coulomb's law | | | | | | | | | | | | | • Examples: | Show that a vector field is | | | | | | | | | | | | | flow of a fluid | not a gradient vector field | | | | | | | | | | | | | force fields | (example 7) | | | | | | | | | | | | | gradient vector fields | | | | | | | | | | | | | | Flow lines | | | | | | | | | | | | | | Types of question: • sketch and recognize vector fields • Verify that a given path is a flow line for some vector field • Find a function with a specified vector field as gradient (qn 21, but not done in the text of the book) | | | | | | | | | | | | | Like questions 15 - 20: Show that $$c(t) = (t, t^2/2)$$ is a flow line for the vector field $F(x,y) = (1,x)$. Solution: We check $c(t) = F(c(t))$ Solution: We find $f(x,y,z) = (y^2, 2xy, 1)$ is the gradient of $f(x,y,z) = (y^2, 2xy, 1)$ is the gradie $F(x,y,z) = (y^2, 2xy, 1)$ is the gradient of f (or show that such f does not exist). Solution: We find f(x,y,z) 50 that If = y2, If = 2xy, If = 1 Look at first equation: f=x1/2+a(y,z) 2nd equation f=xy2 + b(x,2) ## 4.4 Curl and divergence We learn: - The definitions of div F when F: R^n -> R^n curl F when F: R^3 -> R^3 - Notation \(\nabla \cdot \) \nabla \cdot \) \(\nabla \cdot \nabla \cdot \nabla \cdot \nabla \cdot \) \(\nabla \cdot \nabla \cdot \nabla \cdot \nabla \cdot \nabla \cdot \) \(\nabla \cdot \na - curl (grad f) = 0 and div (curl F) = 0 the Laplacian. å (∇f) = ∇² f - What you don't need to memorize: - the other formulas on page 255. - Types of questions: calculate div and curl. - calculate div and cur - Which composites make sense? - Verify e.g. curl (grad f) = 0Scalar curl. Definition Let F = (F 1, F 2, F 3). The curl of F is (20 0x 0x) 30 0x curl measures counterclockwise rotation about a rector, and points in the direction of that Examples: F(x,y,0) = (x,y,0); G(x,y,0) = (-y,x,0)rector